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Application of Fourier Transform Mid-

Infra-Red Attenuated Total Reflectance 

(FT-MIR-ATR) for the authentication 

of Maltese extra virgin olive oil

The price of extra virgin olive oil, a universally used natural product, depends on its bota-

nical source and its production environment, causing extra virgin olive oil to be vulnerable 

for adulteration through mislabelling and inappropriate fraudulent production. The applica-

tion of FT-MIR-ATR spectra in conjunction with several chemometric methods was found 

to provide a cheap, fast, and reliable way for the discrimination of Maltese EVOOs from 

non-Maltese EVOOs. Due to the high level of similarity and collinearity, the application of 

unsupervised PCA models was deemed to be unsatisfactory when it comes to discrimina-

tion of geographical origin. Application of supervised methods of classification namely PLS-
DA, ANN, LDA and SVM, showed to be highly effective in classifying and discriminating 

local and non-local EVOOs samples. The use of variable selection methods significantly 
increased the effectiveness of PLS-DA models when compared to no variable selection. 

ANN, SVM and LDA models were also shown to offer similar classification rates to PLS-DA 
models, giving further confidence in the application of FT-MIR. 

Keywords: Maltese Olive oil, Geographic discrimination, Multivariate data analysis, 

Machine learning, Food authenticity, FTIR, PCA, PLS-DA, Support vector machine, Neural 

networks.

1. INTRODUCTION

Vibrational molecular spectroscopy techniques, including FT-Raman, FT-IR and 

NIR are emerging analytical techniques which show great potential in the de-

termination of adulterant concentrations of refined seed oils in extra virgin olive 
oils (EVOOs) [1]. The use of vibrational spectroscopy has also been extended 
for the determination of fatty acid and triacylglycerols composition [2, 3] as 
well as providing insights of the overall quality of olive oil including peroxide 
value [4], acidity [5] and genetic variety [6]. The application of such methods for 
the determination of geographical and botanical origins has also been studied, 

providing a cheaper, faster, and more reliable form of authentication [7-11]. To 
enhance their potential application, these techniques are used in conjunction 
with chemometric procedures. These methods involve the use of statistical and 
mathematical methods, designed to select an optimum number of variables to 

provide maximum chemical information. The traditional, analytical methodolo-

gy relies on the identification of each compound followed by the quantification 
of the predefined specific chemical markers. However, this methodology has 
several disadvantages, as it involves the identification of an adequate number 
of chemical markers from an overly complex signal. Modern techniques in the 

field of chemometrics offer another solution to the problem, by attaining a more 
holistic view, the analysis of the complete set of unidentified and unquantified 
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markers yields a “fingerprint”. This allows the comple-

te identification of without the prior need to identify 
and quantify the specific markers as specificity lies 
within the complexity of the signal obtained. 
Both Raman and IR spectroscopy relies on the vibra-

tional excitation of chemical bonds, but they differ in 

the measure of the nature of the bonds. In the case 

of IR, it is the change in the molecular dipole moment 

during vibration that is recorded, whilst in the case of 
Raman, it is the change in polarizability of the bond 

which occurs during the vibration that is recorded 
[10]. The peaks/bands in the IR and Raman spectra at 
a specific frequency/wavenumber are characteristic 
of chemical groups that constitute the components 

in the samples, thus such techniques not only enable 

quantitative information but also qualitative informa-

tion giving insights on the different chemical structu-

res and functional groups in the samples. In the case 

of near-infrared spectroscopy (NIR), several papers in 

the literature report the use of near [11], however, the 
use of the mid-infrared (MIR) region (4000-400 cm-1) 

is preferred as narrower and sharper peaks are obtai-
ned due to fundamental vibrations of the molecules 

resulting in a higher signal/noise ratio and better re-

solution.

To protect and preserve the authenticity of EVOOs 

and other traditional foods, the establishment of spe-

cific production protection systems came into action 
in 1992. The European Commission introduced two 
types of accreditation namely the protected designa-

tion of origin (PDO) and protected geographical indica-

tion of origin (PGI) (EEC Regulation 2082/92 and later 

510/2006). The EEC Regulation 510/2006 regarding 

labelling, production and commercialisation of olive 

oil were designed to protect the typical characteristics 
and authenticate food products, to discourage compe-

tition from similar replacement products [12, 13]. The 
Maltese olive oil industry Is an interesting case, as the 

industry has only recently been regenerated using in-

digenous olive stock. Considering the small state of 

the market, mislabelled EVOO originating from other 

countries sold as Maltese EVOO could severely im-

pede the growth of the industry, with severe nega-

tive economic repercussions. Recent studies have 

shown that Maltese EVOOs have a significantly dif-
ferent phenolic and mineral composition furthermore 

spectrofluorimetric and NMR data have shown the 
possibility to authenticate Maltese EVOO [14-18]. The 
overall aim of the study was to determine the singu-

larity of the Maltese olive oil, providing an opportunity 

for local producers to pursue the PDO certification. 
This study aims to provide a quick, easy, and cost-sa-

ving authentication of the origin of Maltese extra vir-

gin olive oils for the protected designation of origin 

certification, through the application of mid-infrared 
spectroscopy and chemometrics. Although the pos-

sibility of using mid- and near-infrared spectroscopy 

to authenticate the origin of extra virgin olive oil sam-

ples has been already described in literature [6-11], 
there are no current studies focusing on the actual 

EVOOs derived from the Maltese islands, furthermore 

only a few papers [9]) use the modelling approach to 
solve this classification problem, and this approach 
is compared to the discrimination in an even smaller 

number of papers. In this study, spectroscopic data 

were analysed both by a discriminant (PLS-DA, LDA) 
and modelling (SVM, ANN) chemometric tools so that 

the difference between the methodologies could be 
assessed. Moreover, the study aims to identify a clear 

understanding of which signal pre-treatment could be 
better for authentication purposes using different che-

mometric methods. Furthermore, the effect of the dif-

ferent spectral transformation on the final classification 
outcomes was also investigated in this study.

2. MATERIALS AND METHODS 

2.1 SAMPLE COLLECTION
For this study, a total of 65 extra virgin olive oil samples 

were collected from the Maltese islands over 4 harvest 
seasons from 2013-2016 and from other neighbouring 

Mediterranean countries. The samples were all taken 
from different oil producers to cover a representative 

sample of the Maltese islands in terms of pedological 

and microclimatic conditions and of manufacturing te-

chniques and the different presses employed. Foreign 

olive oils obtained were bought having a protected de-

signation of origin to ensure the traceability of the pro-

duct. All samples were stored at 4°C in the absence 
of light prior analysis. The samples were preheated to 
35°C in a water bath for an hour and mixed to ensure 
homogeneity.

2.2 FT-MIR-ATR SPECTROSCOPY ACQUISITION
Spectra were acquired on the EVOO in the mid-in-

frared range at room temperature without any further 
sample pre-treatment step, through the use of an 

attenuated total reflection (ATR) cell made of a ZnSe 
crystal (10 reflections at 45° angles; PerkinElmer Inc., 
San Jose, CA). Spectra were recorded using a Shi-
madzu IRAffinity-1 FTIR spectrophotometer controlled 
by a PC running IRsolution software that accompanies 
the equipment. 10 μL of oil was deposited on the cry-

stal and using the press tower of the ATR set at the 
constant height the layer of oil was uninformed throu-

ghout the cell. Spectra were then acquired between 
4000 and 630 cm-1, collecting 90 scans at a nominal 

resolution of 2 cm-1. A background spectrum was re-

corded before each sample analysis. The crystal was 
cleaned after each analysis, using first hexane fol-
lowed by chloroform and wiped dry using lens paper 
tissues. The spectra were exported as an ASCII file 
using the instrumental software Spectrum (PerkinEl-
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mer Inc., Waltham, MA) and imported directly into The 

Unscrambler X 10.3 (CAMO Software Oslo, Norway) 
for all subsequent mathematical data processing.

2.3 SPECTRAL PRE-PROCESSING AND PRE-TREAT-
MENT 
Different spectroscopic signal processing techni-

ques were evaluated and compared: ATR correction, 
5-point smoothing, subtraction of a linear baseline, 

multiplicative scatter correction (MSC), orthogonal si-

gnal correction (OSC), Standard Normal Variate (SNV), 

Savitzky–Golay, first and second derivative. Further-
more, flat line regions of the signal (3200-4000 cm-1) 

were eliminated before the statistical analysis. The ef-
fect of the different spectral transformations on the final 
classification outcomes as compared to those obtai-
ned without any signal processing. Following a basic 
ATR-correction, smoothing was the first transforma-

tion applied to the FTIR spectra. The smoothing para-

meters were first determined by trial and error to ma-

ximise the smoothness and minimising distortion but, 

at the same time, retaining enough information from 

the original signal. It was found that 5-point smoothing 
reached the optimal noise reduction and retained the 

maximum information from the spectra. The spectra 

were normalised, a transformation that put all spectra 
on the same scale, thus eliminating the fluctuations in 
intensities between spectra arising from slightly diffe-

rent sample concentrations. Both peak normalisation 
and area normalisation were carried out separately on 
the baseline-corrected spectrum. Normalisation was 
followed by detrending and deresolving procedures. 
The detrend transformation removes the effects of 

non-linear trends, showing only the absolute changes 
in values by removing the least-squares line of best 

fit from the data, thus focusing only on fluctuations 
between data. Deresolve is a noise-reducing tran-

sformation that operates by artificially lowering the 
resolution of the spectra. Other treatments applied 

to the baseline-corrected spectrum include multipli-

cative and orthogonal scatter corrections (MSC and 

OSC), and standard normal variate (SNV). MSC cor-

rected for scaling effects by performing a regression 

of a spectrum against a reference spectrum, thereby 

correcting the spectrum using the slope of the fit 
obtained from the regression. OSC removes variance 

from the factors that is not related to the response, 

by finding directions in X that describe large variances 
while being orthogonal to Y and subtracting them from 
the data. The SNV transformation works similarly to 
MSC, however, it standardises each spectrum using 
data from the spectrum itself rather than data avera-

ged from all the spectra. Several derivatising procedu-

res (1st and 2nd derivatives, Savitzky-Golay) were also 
carried out. The 1st derivative removes baseline effects 

while the 2nd derivative also removes the slope of the 
spectrum by measuring the change in slope, thereby 

sharpening spectral features. The Savitzky-Golay deri-

vative fits a low-degree polynomial to adjacent points 
in a spectrum, thereby smoothing the spectrum while 
minimally affecting the signal-to-noise ratio.

2.4 SUPERVISED AND UNSUPERVISED MULTIVARIATE 
STATISTICAL TECHNIQUES
A principal component analysis (PCA) was carried out 
using Unscrambler X 10.3 to identify any gross outliers 

and determine any preliminary clustering reflecting 
the geographical origin. An inspection of the PCA lo-

adings was carried out to determine whether the loa-

dings had a spectral shape indicating that observed 

variation was due to the FTIR spectra and not due to 
noise. PCA was carried out on all treated spectra to 
reduce all the spectral information down to 7 principal 
components (PCs) that retain the information of the 

original dataset. The first PC accounted for most of 
the variation in the dataset, with successive principal 
components accounting for decreasing amounts of 

the variation. The resulting PC-1 vs. PC-2 plots could 

be examined for any clustering that might arise from 

each spectral pre-treatment. Similarly, to PLS, PCA 

generates loading plots that indicate those x-values 

that are most responsible for the variability between 
the different spectra. The loading plots for the first two 
principal components (which explain most of the va-

riability in the dataset) were used to determine which 
wavelength values have the largest influence on the 
separation of PC-1 and PC-2. 

The main aim of this study is to develop methods that 

can predict whether an unknown olive oil sample co-

mes from Maltese islands or not. This was done throu-

gh the application of multivariate pattern recognition 

statistical method on the FTIR. The whole dataset 
consisted of two sets: the training and test sets (the 
former to build the model, the latter to validate it). To 

preserve the diversity in the training and test sets and 

to account for the fact that different pre-treatments 

had to be tested, a unique sample splitting scheme 

was used. The following method was adopted to co-

ver such variation in the two sets and at the same time 
be able to compare the outcomes after the different 

pre-treatments. The Maltese and the non-Maltese 

samples were grouped in an ascending way so that 
the first 30 samples would represent Maltese EVOO’s 
whilst the rest correspond to non–Maltese EVOO’s. 
A Venetian blind cross-validation was applied, which 
selects every 5th sample from the data by making 

data splits such that all samples are left out exactly 

once (s = 5). This sampling method excluded 20% of 

the observation so that they would be retained as the 
testing set. The remaining 80% of the observation was 
used to build the training set. 

In the case of PLS-DA, an inspection of the VIP scores 

was carried out. VIP is an index of how much a single 
variable contributes to the bilinear model. VIP larger 



LA RIVISTA ITALIANA DELLE SOSTANZE GRASSE - VOL XCVIII - GENNAIO/MARZO 2021

18

than 0.8 is significantly contributing to discrimination. 
Variables having a smaller VIP than 0.8, are an ideal 

candidate for deletion from the model [19]. An adju-

sted PLS model was repeated after removing these 
variables and the good the suitability for the adjusted 
model was evaluated. In SLC-DA a manual selection 
of chemical shifts was carried out based on the lar-
gest F-ratios and smallest p-values. The variables 

with a p-value smaller than 0.05 and with the highest 
F-ratio, as 0 obtained through a stepwise forward and 
backwards method, were selected since these repre-

sent the highest correlation with the response. The se-

lected variables obtained in SLC-DA were arranged in 
ascending order in terms of their scoring coefficients. 
A smaller set of variables were selected which con-

sisted of 20 variables which corresponded to 10 va-

riables having most positive standardised scoring co-

efficients and 10 most negative standardised scoring 
coefficients. These variables were then subjected to a 
Fisher LDA.

2.5 SUPPORT VECTOR MACHINE AND ARTIFICIAL 
NEURAL NETWORKS
In the case of SVM, the models were built using dif-
ferent cross-validation forms. In training set which 
constituted 80% of the samples was used to build 
the SVM models. These models were segment vali-
dated whereby the training data set was first partitio-

ned into 10 equally (or nearly equally) sized segments. 

Subsequently, 10 iterations of training and validation 

were performed so that, within each iteration, a diffe-

rent segment of the data was held out for validation 
while the remaining 9 folds used for learning. Data 
matrix was stratified before being split into segmen-

ts to ensure each segment is a good representative 

of the whole data set. Once the model was fitted the 
% accuracy in the training and validation was derived. 
In this experiment, a second cross-validation method 

was employed whereby the models fitted on the 80% 
of the training set were tested on the remaining 20% 
of the data so that % predictability for each model 

is obtained. Although SVM models have no limit on 

the number of variables that can be used, it requires 

a computationally intensive grid search to optimise 

the C parameter and thus analysis was performed on 
SLC-DA selected variables. The C parameter is a tra-

de-off parameter between complexity and risk. If the C 
parameter is exceptionally low, then the errors produ-

ced during the training stage become less important, 

thus risking the model to become overfitted.
To determine the suitability of the whole FTIR spectra 
to discriminate EVOOs of Maltese origin, an artificial 
neural network analysis was carried out. The main 
advantage of a neural network model is that it can 
efficiently model different response surfaces due to 
its nonlinearity, allowing a better fit to the data given 
enough hidden nodes and layer, providing an accurate 

prediction for kind of data. Unlike other modelling and 

discriminate methods (LDA, PLS) the main disadvan-

tage of a neural network model is that the results are 
not easily interpretable, due to presence of intermedia-

te hidden layers that direct path from the X variables 

to the Y variables, as in the case of regular regres-

sion but cannot be fully interpreted. In this experiment, 

25 iterations were carried out using a TanH activation 
function as the standard neuron activation function 

in JMP software. TanH function transforms values 
to be between -1 and 1, acting like the centred and 
scaled version of the logistic function. In the case of 

ANN three different cross-validation techniques were 
employed to prevent model overfitting; the k-fold (CV-
10), hold back (33.3%) and excluded rows (Venetian 
blinds).

2.6 ASSESSMENT OF MODEL PERFORMANCE

2.6.1 Goodness-of-fit 
The goodness-of-fit of PLS was assessed from the % 
of variability explained in X and Y, and the sensitivity 
of the model on a specific number of latent variables 
was assessed by Predictive Residual Sum of Squares 
(PRESS). The Van der Voet T2 and the Prob > van der 

Voet T2 were also taken under consideration in which 
the null hypothesis of the test states that the squared 

residuals for both models have the same distribution, 

hence the same predictive ability.

Where for each observation ith observation a regres-

sion model is fitted to the remaining observations N-1. 
The is model is used to predict y

i
 denoted by . The 

residual is defined by ( ), which is calculated for 
all the remaining observations.

2.6.2 Evaluation of model performance
The accuracy of training, testing and prediction by 

PLS-DA was determined as the numerical coordinate 
systems were rounded up to the nearest integer of ei-
ther zero or one. A negative value was assigned a va-

lue of zero, whereas a value greater than one was as-

signed a value of one. The numerical output obtained 

was compared to the previously assigned value based 
on the known origin. In the case of LDA, the output 
obtained classified the sample as either zero or one, 
so there was no need for any manipulation. The % 
accuracy was determined by the following equation:

% accuracy = 100 –                 100 Km

Kt

Where Km is the number of samples that are misclassi-

fied, Kt is the total number of samples used in training, 

testing or prediction model. 

PRESS
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3. RESULTS AND DISCUSSION

Figure 1 shows a typical EVOO NIR spectrum, the 
maxima obtained at an absorbance of 3006 cm-1 

is attributed to the stretching vibration of (=C–H) of 
oleic acid acyl groups and linoleic and linolenic acyl 

groups. The strong band absorptions observed in the 

region of 3000-2800 cm-1 corresponds to the (-C–H) 
stretching vibrations of methylene (–CH

2
–) and methyl 

(–CH
3
) groups observed at frequencies of 2922 and 

2853 cm-1, respectively. The bending vibrations of the 

methylene and methyl groups are observed at 1465 

cm-1 and 1377 cm-1 that correspond to C=H scissors 
deformation vibration and bending vibration of CH

2
 

groups, respectively. The sharp intense peak around 

1740 cm-1 is attributed to the presence of carbonyl 

groups that corresponds to the (-C=O) double bond 

stretching vibration of the ester carbonyl functional 

group of the triglycerides. The medium intensity pe-

aks observed at 1160.74 cm-1 and 1236.86 cm-1 is 

assigned to the vibration of the C-O ester groups and 

CH
2
 groups, respectively. Small intensity peaks obser-

ved at 1117 cm-1 are associated with the stretching 
vibration of the C-O ester group. The low-intensity 
peak observed at 722 cm-1 corresponds to the cis-

CH=CH– bending out of plane [20-24] (Fig. 1).
Different kinds of spectral pre-treatments were te-

sted and compared to overcome the instrumental li-

mitation and account for scattering and other minor 

variations that would hinder the performance of the 
classification models. A total of 12 spectral pre-treat-
ment methods were used, in each case, after pre-tre-

atment, a principal component analysis was carried 
to dimensionally reduce the number of variables into a 

small set of principal components whilst retaining the 
information of the larger set. PCA enabled the preli-

minary identification of which pre-treatment method 
offered the highest variability and possible sample 

grouping based on the geographical origin. Figure 2 

shows some of the different forms of spectral pre-tre-

atments employed and the corresponding PCA plot 

for the first two principal components. From the % 
variability explained it was found that 5 points smo-

othing enhanced the variability explained by the 1st 

principal component when compared to the ATR cor-
rection. This was attributed to the improved signal to 
noise ratio especially in the 1550-1650 cm-1 region, 

thus this observation justified the use of smoothing 
before the other spectral pre-treatment methods. 

Whilst the other spectral pre-treatment methods di-

splayed an improvement in the variability explained 

after smoothing, QN, MSC, SNV showed a lower % 
variability when compared to the basic ATR correction 
and smoothing. In the case of QN, this was expected 
as, unlike the other pre-treatment methods, it aims 

to achieve the same distribution of intensities of all 

spectra, making it not particularly useful when dea-

ling with spectra of a continuous nature. None of the 
spectral methods managed to show any form of di-
stinctive sample grouping reflecting the geographical 
origin of EVOOs (Fig. 2). 

3.1. APPLICATION OF PLS-DA FOR THE DISCRIMINA-
TION OF MALTESE EVOOs
After splitting the data according to the procedure 

described above, chemometric classification models 
were built and tested on all the MIR spectral pre-treat-
ment using a PLS regression algorithm using JMP 10 
and its inbuilt leave one out cross-validation method 

(LOOCV). Table I shows the number of latent variables 
extracted, the predicted root mean square error, for 

the different spectra pre-treatment methods. The % 

accuracy (correct classification), showed that, except 
for normalisation, all the other spectral treatments had 

the same effectiveness in correctly classifying the ge-

ographical origin of EVOOs. From the results obtained 

it was observed that the Savitzky–Golay, 1st derivati-
ve, MSC, OSC, and detrending, showed lower press 
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show a VIP value significantly larger than 0.8. The next 
step was to build another PLS model this time using 
only variables with a VIP score > 0.8. Table I shows 
the results obtained by using the adjusted PLS mo-

del. Comparing the models obtained using variable 

selection to the one previously obtained without any 
variable selection, no noticeable difference was ob-

served in % accuracy and predictability of the model. 

Nonetheless, a lower PRESS was observed for most 
of the pre-treatments. This observation suggests that, 

in the case of ATR-FTIR data, no need for extensive 

variable selection is required to obtain an exceptio-

nally good classification method with the use of PLS 
models (Fig. 3). 

3.2. APPLICATION OF SLC-DA AND LDA METHODS 
FOR DISCRIMINATING MALTESE EVOOs
To obtain a more robust method of classification with 
the use of a smaller number of variables, the VIP data 

and a higher % accuracy and % predictability. On the 

other hand, normalisation seems to negatively affect 

the amount of variability of in fixed data set. To fully in-

terpret the PLS models obtained, an inspection of the 

VIP scores was used to determine which predictors 
(variables) are mainly influencing the latent vectors 
obtained. VIP is an index of how much a single va-

riable contributes to the bilinear model and it is scaled 

in such a way that indices having VIP larger than 0.8 is 
deemed as significantly contributing to discrimination 
(Tab.I).

As shown in Figure 3, the VIP > 0.8 identified rele-

vant features in the spectra, particularly, stretching 

vibration of (=C–H) of acyl groups 3006 cm-1, (-C=O) 

double bond stretching (around 1700 cm-1) and C-H 
bending in the fingerprint region (650–750 cm-1) ap-

pear to be the regions contributing the most to the bi-

linear model. Additionally, C-H stretching (2800–3100 
cm-1) and C-O single bond stretching (1100 cm-1) also 
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Figure 2 - PCA score plots (black dots represent the Maltese EVOOs whilst red diamonds represent the non-Maltese EVOOs) 

and loading plots for PC1 (black line) and PC2 (red line) for the baseline-corrected spectra (A) and baseline corrected spectra 

after normalisation (B). 

 

B 



LA RIVISTA ITALIANA DELLE SOSTANZE GRASSE - VOL XCVIII - GENNAIO/MARZO 2021

21

set obtained from the previous PLS-DA analysis was 
subjected to a stepwise linear canonical discriminate 
analysis SLC-DA. SLC-DA was performed on the MIR 
data from all the pre-treatment methods to extract only 

a small amount of highly discriminate variables which 
would enable easier and faster discrimination betwe-

en the origins of EVOOs. This strategy involved a sub-

stantial reduction of the dimensionality of the data. To 

further reduce the number of variables selected from 

the SLC-DA analysis, a minimum of 14 variables was 
selected to carry out a conventional LDA. During the 

SLC-DA the variables chosen by applying a forward 
stepwise variable selection algorithm using JMP 10 
using a Wilks’ Lambda as a selection criterion and 

an F-statistic factor to determine the significance of 
the changes in Lambda when the influence of a new 

variable is evaluated. The most significant variables 
were then extracted, and their canonical scoring co-

efficients were plotted as shown in Figure 4. The main 
advantage of using SLC-DA over the convention LDA 

is the ability to perform a feature selection. Only those 

variables which helped to improve classification per-
formance were used whereas variables without discri-
minant information were discarded. Furthermore, LDA 
is greatly affected by the normality distribution of pre-

dictor variables and their homogeneity. In this expe-

riment, most of the selected variables for LDA were 
found to be non-normally distributed and thus a Fi-

sher LDA rather than a Bayesian LDA model was bu-

ilt. Furthermore, the application of Fisher LDA model 

avoided the need for homogeneity since the normality 

assumption overrides the need for homogeneity. 

Figure 3 - (A) PLS score plots (black dots represent the Maltese EVOOs whilst red diamonds represent the non-Maltese 

EVOOs) for Savitzky–Golay derivatised spectra. (B) superimposed Savitzky–Golay spectrum (black line) and variables having a 

VIP score > 0.8.  
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tisation of the spectra had the highest % accuracy 

in both the training and validation dataset (100% for 

both). Figure 4 shows the biplot obtained for the 1st 
derivatised spectral pre-treatments, it was clear that 
there was complete discrimination between the EVO-

Os of Maltese and non-Maltese origin (Fig. 4).

3.3. APPLICATION OF SUPPORT VECTOR MACHINE 
CLASSIFICATION FOR DISCRIMINATING MALTESE 
EVOOs
Results obtained from SVM classification are present 
in Table II high rates of accuracy and predictability 

were obtained for the majority of the spectral pre-tre-

atments further validating that SVM classification is 
highly adaptable to the kind of data used. In the case 

of linear SVM, the best classification was obtained 

Figure 4 shows that for the variables selected during 
SLC-DA for 1st derivatised spectra, it was shown that 
the selected variables were mainly concentrated in the 
1100-500 cm-1 range which corresponds to the C-H 
bending in the fingerprint region, whilst shouldering 
peaks next to the stretching vibration of (=C–H) of acyl 
groups 3006 cm-1, (-C=O) double bond stretching 

(around 1700 cm-1) also appear to be the regions con-

tributing the bilinear model. Table IV shows the results 
obtained during the training and testing the phase of 

the LDA models obtained for all the pre-treatments 

ranged from 81-100% accuracy. The classification 
model obtained was then tested and except for OSC 
and quantile normalisation, the validation accuracy 

ranged from 70-100%. From the results obtained it 

was shown that 1st, 2nd and Savitzky–Golay deriva-

Table II - Summary of LDA and SVM Model performance  

 

Pre-treatment 

LDA 
SVM 

Kernel Type Linear Kernel Type Radial 

% Accuracy % Predictability % Accuracy % Predictability % Accuracy % Predictability 

Raw 97.92 95.00 100.00 70.00 100.00 80.00 

Smoothing 87.50 70.00 100.00 100.00 89.58 80.00 

Normalized 100.00 95.00 97.92 90.00 95.83 75.00 

Q Norm 81.25 65.00 91.67 75.00 97.92 70.00 

Baseline 100.00 85.00 100.00 60.00 100.00 65.00 

Detrend 91.67 85.00 100.00 70.00 93.75 70.00 

Deresolve 100.00 95.00 97.92 65.00 91.67 100.00 

SNV 97.92 85.00 100.00 95.00 100.00 60.00 

MSC 100.00 95.00 100.00 95.00 95.83 90.00 

OSC 83.33 30.00 100.00 80.00 79.17 60.00 

SGD 100.00 100.00 100.00 100.00 100.00 95.00 

1st  100.00 100.00 100.00 100.00 100.00 95.00 

2nd  100.00 100.00 16.67 35.00 100.00 95.00 

 

Table I - Results from PLS-DA models applied to spectral transformations of ATR-FT-MIR spectra and variable selection 

procedures. (MSC = Multiplicative Scatter Correction, OSC = Orthogonal Signal Correction, Q Norm= Quantile Normalise, SNV = 

Standard Normal Variate, SGD = Savitzky–Golay derivatised spectra, 1st = first deriviative specta, 2nd = second derivistised 

spectra) 

 

 Whole Spectrum VIP > 0.8 

Pretreatment 
Latent  

Variables 
Press % Accuarcy % Predicatablity 

Latent 

Variables 
PRESS % Accuarcy % Predicatablity 

Raw 5 0.79 92.65 100.00 5 0.85 97.06 100.00 

Smoothing 15 0.73 91.18 100.00 15 0.72 91.18 100.00 

Baseline 8 0.75 89.71 84.62 1 1.01 88.25 84.62 

Norm 1 1.02 50.00 61.54 5 0.79 50.00 61.54 

QNorm 5 0.88 85.29 92.31 10 0.76 86.76 92.31 

Detrend 15 0.49 94.12 100.00 14 0.46 94.12 100.00 

Deresolve 15 0.71 92.65 100.00 15 0.72 92.65 100.00 

SNV 9 0.68 91.18 100.00 13 0.66 91.18 100.00 

MSC 15 0.65 91.12 100.00 13 0.66 92.65 100.00 

OSC 15 0.56 92.65 100.00 15 0.19 100.00 100.00 

SGD 9 0.65 97.06 100.00 5 0.43 98.56 100.00 

1st Der. 9 0.65 97.06 100.00 5 0.43 97.06 100.00 

2nd Der. 13 0.80 92.65 100.00 8 0.53 98.53 100.00 
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Figure 4 - (A) 1st order derivatise spectrum showing variables selected during stepwise linear discriminate analysis and the 

canonical scores obtained for the selected variables (B) LDA plot using the most discriminated variables showing Maltese 

EVOOs in black and non-Maltese EVOOs in red. (▲) Maltese EVOOS samples used in the training set (●) Maltese EVOOs 
samples used in the validation set (■) Foreign EVOO samples used in the training set (◆) Foreign EVOOs samples used in the 

validation set. 
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by using 5-point smoothing, 1st and Savitzky–Golay 

derivatisation techniques as 100% accuracy and pre-

dictability were obtained. Unlike what was observed 
in PLS-DA, and LDA, spectra pre-treated with 2nd 
order derivatisation had the lowest % accuracy in the 
training set (16.17%) and % predictability (35%) when 
compared to the rest of the spectral pre-treatments 

under the linear type SVM. Unlike the rest of the other 

spectral pre-treatments, the 2nd order derivatisation 

showed an increase in accuracy and predictability on 
the use of a radial type Kernel function. The 2nd order 

derivatisation reaches a 100% accuracy and a 95% 

predictability on the use of a radial type Kernel fun-

ction, suggesting that the group projected in the hi-
gher dimensional space cannot be separated using a 

linear hyperplane but through a spherical hyperplane 

formed from the use of the radial Kernel type function 

(Tab II).

(▲) Maltese EVOOS samples used in the training set (●) Maltese EVOOs 
samples used in the validation set (■) Foreign EVOO samples used in the training set (◆
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methods, provided a cheap, fast, and reliable way 
for the determination of the geographical origin of 

EVOOs, especially when it comes to discrimination of 
Maltese EVOOs from non-Maltese EVOOs. From the 

preliminary assessment using only unsupervised PCA 

models, no significant clustering was observed. This 
was attributed to the high levels of similarity betwe-

en the two classes of EVOOs studied, such method 
was deemed to be unsatisfactory when it comes to 
discrimination of geographical origin. Application of 

supervised methods of classification namely PLS-DA, 
ANN, LDA and SVM showed to be highly effective in 
discriminating Maltese EVOOs. The use of variable 

selection methods significantly increased the effecti-
veness of PLS-DA models when compared to those 
in which either spectrum was used. ANN, SVM and 
LDA models were also shown to offer similar classifi-

cation rates to PLS-DA models and thus corrobora-

te the results obtained from the PLS-DA models and 

put confidence in the use of FT-MIR-ATR methods in 
conjunction with spectral transformation for the clas-

sification of Maltese and foreign EVOOs samples. It 
was further highlighted that the use of Savitsky Golay 
1st and 2nd derived FTIR spectra greatly improve the 

potential application of multivariate analysis in discri-

minating and predicting Maltese EVOOs.
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3.4. WHOLE FTIR MODELLING USING FEED-FORWARD 
PREDICTIVE ARTIFICIAL NEURAL NETWORKS
Artificial neural network (ANN) is a mathematical algo-

rithm with the capability of relating large amounts of 
the input and output parameters. The main advanta-

ges of ANN are their nonlinearity, allowing the better fit 
to the data; noise insensitivity, providing accurate pre-

dictions. For these reasons, the application of AANs 

was computed on either FTIR spectrum without any 
form of variable selection methods. The performance 

of ANNs was compared to the PLS-DA models obtai-
ned using either spectrum as shown in Table I. In the 
case of ANN using three different forms of cross-vali-

dation, namely 33.3% of data holdback, CV-10 k-fold 

and excluded row validation were employed. In com-

parison to the PLS-DA models, ANNs had a lower 
performance especially when it comes to the testing 
phase as shown in Table III. The lower % precision re-

corded in the ANN is coherent to several other studies 

which showed that PLS-DA has a higher sensitivity 
and performance [23, 24]. ANNs work better if they 
deal with non-linear dependence between input and 
output vectors and generally, are more efficient in mo-

delling classes separated with non-linear boundaries, 
however from the experimental data we have shown 
that FTIR data for the different EVOO origins attain a 

more linearly discrimination as shown by SVM, and 
LDA results. Nonetheless, ANN can provide a sub-

stantially good corroboration of PLS-DA without the 
excessive need for variable selection (Tab. III).

4. CONCLUSION 

In conclusion, it has been shown that FT-MIR-ATR 
spectra, in conjunction with several chemometric 

 

Table III - Summary of ANN Model performance with no variable selection on the ‘whole’ spectrum using different cross-

validation methods 

CV Type Hold back K-fold Excluded Row 

Pre-treatment % Accuracy % Predictability % Accuracy % Predictability % Accuracy % Predictability 

Raw 100.00 100.00 85.51 92.31 85.51 92.31 

Smoothing 97.10 92.31 97.10 92.31 94.20 76.92 

Normalized 81.16 76.92 91.30 92.31 53.62 61.54 

Q Norm 92.75 92.31 100.00 100.00 91.30 92.31 

Baseline 63.77 69.23 98.55 100.00 68.12 69.23 

Detrend 100.00 100.00 98.55 92.31 98.55 92.31 

Deresolve 97.10 97.10 94.20 97.10 97.10 94.20 

SNV 94.20 100.00 100.00 100.00 82.61 84.62 

MSC 98.55 100.00 100.00 100.00 84.06 76.92 

OSC 92.75 61.54 92.75 61.54 95.65 92.31 

SGD 95.65 92.31 100.00 100.00 91.30 100.00 

1st 97.10 100.00 98.55 92.31 98.55 92.31 

2nd 92.75 92.31 100.00 100.00 97.10 84.62 
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