

innovazione e ricerca

La validazione di metodi analitici: approccio metodologico ed esempi pratici

Liliana Folegatti

Responsabile Laboratorio sostanze grasse, derivati e tecnologie olearie-Innovhub-SSI srl

Indice dei contenuti

innovazione e ricerca

- Introduzione ai metodi di analisi (riferimenti normativi, scelta dei metodi di analisi)
- Processo di sviluppo e convalida di un metodo di analisi
- Primo caso pratico Determinazione del fosforo negli oli
- Secondo caso pratico Determinazione di elementi negli oli
- Terzo caso pratico Determinazione di amminoacidi liberi

Riferimenti normativi

innovazione e ricerca

UNI CEI EN ISO/IEC 17025, Requisiti generali per la competenza dei laboratori di prova e taratura, § 7.2 Selezione, verifica e validazione dei metodi

ACCREDIA RT-08, Prescrizioni per l'accreditamento dei Laboratori di prova, § 7.2 Selezione, verifica e validazione dei metodi

MANUALE UNICHIM N. 179/0, Linee guida per la convalida di metodi analitici nei laboratori chimici - Criteri generali

MANUALE UNICHIM N. 179/1, Linee guida per la convalida di metodi analitici nei laboratori chimici - Valutazione della precisione (ripetibilità stretta) di un metodo analitico eseguito in un unico laboratorio da un solo operatore su di un unico strumento in un breve intervallo di tempo

MANUALE UNICHIM N. 179/2, Linee guida per la convalida di metodi analitici nei laboratori chimici - Valutazione della precisione (stretta e intermedia) di un metodo analitico eseguito in un unico laboratorio con più operatori

EURACHEM Guide, The Fitness for Purpose of Analytical Methods - A Laboratory Guide to Method Validation and Related Topics

UNI ISO 5725-2, Accuratezza (esattezza e precisione) dei risultati e dei metodi di misurazione - Parte 2: Metodo base per determinare la ripetibilità e la riproducibilità di un metodo di misurazione normalizzato **PG 13,** Valutazione dell'incertezza di misura

PG 14, METODI DI PROVA SVILUPPATI DAL LABORATORIO (METODI INTERNI): INDICAZIONI PER LA LORO STESURA E VALIDAZIONE

Scelta dei metodi

innovazione e ricerca

La norma UNI CEI EN ISO/IEC 17025 nel p.to 5.4 "metodi di prova" indica le seguenti tipologie di metodi: non normalizzati, normalizzati e sviluppati dal laboratorio. ACCREDIA nel regolamento RT-08 ne esprime la definizione:

Metodo di prova non normalizzato: metodo emesso da organizzazioni tecniche nazionali o internazionali (ad es. Rapporti ISTISAN, Quaderni IRSA, ecc) e metodo sviluppato da laboratori/centri di riferimento nazionali o comunitari o da centri di referenza nazionali accreditati. Elemento discriminante è che la responsabilità dei dati forniti è riferita non all'organizzazione che lo ha emesso, ma ai singoli autori.

Metodo di prova normalizzato: metodo emesso da organismi di normazione nazionali, europei o internazionali (ad es. UNI, CEI, CEN, ISO, UNICHIM, AOAC, ecc).

Metodo di prova sviluppato dal laboratorio (metodo interno): metodo di prova messo a punto o adottato da un laboratorio sulla base di conoscenze desunte dalla letteratura scientifica e/o dall'esperienza pratica, e validato dal laboratorio. Il metodo interno può essere sia un metodo sviluppato dal laboratorio che un metodo normalizzato o non normalizzato che è stato sostanzialmente modificato a seguito di particolari esigenze del laboratorio.

Convalida di un metodo di analisi

innovazione e ricerca

Il processo di validazione ha lo scopo di documentare la validità per l'utilizzo previsto di un metodo mediante la valutazione di tutti i parametri utili a tale scopo.

La validazione è la conferma attraverso l'esame e l'apporto di evidenza oggettiva che i requisiti particolari per l'utilizzazione prevista siano soddisfatti (punto 5.4.5.1 della norma UNI CEI EN ISO/IEC 17025)

E' un processo che coinvolge sia aspetti cogenti e tecnici, ma anche temporali ed economici.

La norma (p.to 5.4.5.2) richiede che un metodo di prova venga validato nei seguenti casi:

- il metodo non è normalizzato;
- > il metodo è stato progettato e/o sviluppato dal laboratorio;
- ➢ il metodo è normalizzato ma viene utilizzato al di fuori dello scopo e/o del campo di applicazione previsto;
- il metodo è normalizzato ma vengono apportate estensioni e/o modifiche;
- > il metodo è normalizzato ma non è stato validato.

Esigenze sperimentali di validazione

innovazione e ricerca

- Richiesta di sviluppo di un nuovo metodo analitico per esigenze specifiche del Cliente
- Aggiornamento o estensione di un metodo in uso ad un nuovo aspetto analitico
- Utilizzo del metodo analitico in uso presso laboratori differenti, con operatori diversi e strumentazione diversa
- Dimostrare l'equivalenza del metodo analitico in esame con un metodo standard

Convalida di un metodo di analisi

innovazione e ricerca

Lo sviluppo di un metodo comprende una serie di attività quali:

- La specifica dei requisiti (di legge, in norme, decreti, direttive e regolamenti UE, ecc)
- Valutazione costi e benefici
- ➤ La determinazione dei parametri per la validazione del metodo
- > La verifica che il metodo soddisfi tutti i requisiti iniziali
- La documentazione che dimostri l'appropriata validazione del metodo stesso
- Dichiarazione finale di validazione
- > Riesame del metodo interno almeno ogni due anni, o nei casi in cui vengono introdotte modifiche significative.

L'approccio alla validazione di un metodo di prova segue essenzialmente una tra le due possibili alternative (PG 14):

- > approccio analitico, mediante il quale si fornisce evidenza dell'adeguatezza delle proprietà rilevate valutando l'incertezza ed i diversi fattori che influenzano la prova;
- > approccio comparativo, che consiste nella validazione del metodo mediante un diretto confronto attraverso l'uso
 - di materiali di riferimento certificati, che esprimono con accuratezza le proprietà ricercate
 - effettuando confronti diretti con metodi analoghi già validati dagli enti di normazione
 - partecipando a confronti interlaboratorio.

Criteri di prestazione in assenza di metodi

innovazione e ricerca

In assenza di metodi specifici stabiliti a livello dell'Unione europea per la determinazione dei contaminanti nei prodotti alimentari, i laboratori sono liberi di applicare qualsiasi metodo di analisi convalidato per la matrice fornita, purché esso rispetti gli specifici criteri di prestazione.

Il REGOLAMENTO (CE) N. 333/2007 relativo ai metodi di campionamento e di analisi per il controllo ufficiale dei tenori di piombo, cadmio, mercurio, stagno inorganico, 3-MCPD e idrocarburi policiclici aromatici nei prodotti alimentari e il REGOLAMENTO (UE) 582/2016 che modifica il regolamento (CE) n. 333/2007 per quanto riguarda l'analisi di arsenico inorganico, piombo e idrocarburi policiclici aromatici e per alcuni criteri di prestazione relativi all'analisi

Parametro	Criterio	
Applicabilità	Alimenti di cui al regolamento (CE) n. 1881/2006	
Specificità	Nessuna interferenza di matrice o spettro	
Ripetibilità (RSD _r)	HORRAT _r meno di 2	
Riproducibilità (RSD _R)	HORRAT _R meno di 2	

Parametro	Criterio					
Recupero	Si applicano l	plicano le disposizioni di cui al punto D.1.2				
LOD	= tre decimi d	el LOQ				
LOQ	Stagno inor- ganico	or- ≤ 10 mg/kg				
	Piombo	ML < 0,01 mg/kg	0,01 < ML ≤ 0,02 mg/kg	0,02 < ML < 0,1 mg/kg	ML ≥ 0,1 mg/kg	
		≤ ML	≤ due terzi del ML	≤ due quinti del ML	≤ un quinto del ML	
	Cadmio,	ML è < 0,1	100 mg/kg	ML è ≥ 0,100 mg/kg		
	mercurio, arsenico inorganico	≤ due qui	≤ due quinti del ML		to del ML»	

Processo di sviluppo e convalida di un metodo di analisi

innovazione e ricerca

Passa attraverso uno studio di fattibilità e convalida i cui obiettivi sono:	
Definire dati e requisiti del metodo, sia in termini sperimentali che economici (sostenibilità del progetto)	
Verificare se il metodo finale soddisfa le esigenze iniziali.	

Studio di fattibilità

Esigenze di sviluppo

FASE INIZIALE

Ricerca bibliografica (es: normative applicabili) Identificazione specifiche iniziali del metodo

- Misure Strumentali
- Definizione delle condizioni strumentali migliori (Tarature)
- Studio dell'analita in matrici reali valutazione interferenze.
- Preparazione del campione
- Trattamenti su campioni tal quali o addizionati
- Ripetibilità/Riproducibilità intermedia su campioni reali
- Accuratezza
- Mediante campioni CRM
- Valutazione del recupero

Dichiarazione finale di

convalida

Riesame periodico della validazione del metodo

Parametri di validazione

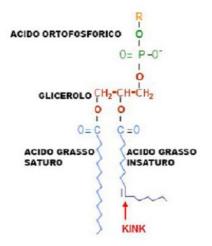
innovazione e ricerca

La validazione comporta la valutazione di alcuni parametri del metodo di analisi sviluppato e/o riesaminato

Campo di misura
☐ Selettività/Specificità
Range di linearità
Precisione (ripetibilità, precisione
intermedia, riproducibilità)
Accuratezza (Esattezza + precisione)
☐ Recupero
Limite di rivelabilità e di quantificazione
☐ Robustezza
Incertezza di misura

Primo caso pratico – Determinazione del fosforo negli oli

innovazione e ricerca


Determinazione diretta del fosforo negli oli e grassi vegetali ed animali mediante assorbimento atomico con fornetto di grafite (GF-AAS) D. Baglio, L. Folegatti - RISG VOL. LXXXIX Luglio/Settembre 2012

Obiettivi: sviluppare e validare un metodo per l'analisi diretta del Fosforo (in fase organica), adatto alle industrie del settore, semplice, rapido, affidabile, a costi accessibili con un ampio campo di applicazione, limiti di rilevabilità e quantificazione bassi e con l'impiego di una strumentazione di uso comune nei laboratori di analisi. I risultati ottenuti erano confrontati con il metodo di riferimento ISO 10540-2:2003, con ottima corrispondenza tra loro.

Fornetto di grafite

DI-ACIL-FOSFO-GLICERIDE

R (RADICALE)	FORMULA
COLINA	ÇH₃ OH=CH₂•CH₂•N•CH₃ CH₃
ETANOLAMINA	OH-CH ₂ -CH ₂ -N-H ₃ *
SERINA	OH-CH ₂ -CH-N-H ₃ + C =0 OH

Studio di fattibilità del metodo

innovazione e ricerca

Fase iniziale di ricerca bibliografica

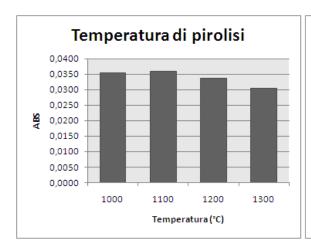
- Metodi di riferimento: ISO 10540-2:2003 Determination of phosphorus content Part 2: Method using graphite furnace atomic absorption spectrometry, ISO 10540-3:2002 Part 3: Method using inductively coupled plasma (ICP) optical emission spectroscopy
- Scelta nel modificante di matrice: differenti possibilità (lantanio, ittrio, nichel, palladio). Scelta finale per metodo in fase organica è stata una soluzione di nichel in cicloesano alla concentrazione di 0.2%. Per metodo in fase acquosa modificante più diffuso è una soluzione costituita da palladio in miscela con piccole quantità di calcio o magnesio.

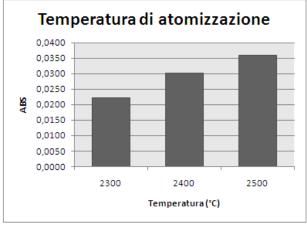
Fase di messa a punto

- Misure Strumentali
- **Definizione delle condizioni strumentali migliori:** spettrofotometro ad assorbimento atomico Mod. AAnalyst 600 Perkin Elmer- fornetto di grafite con correzione del rumore di fondo mediante effetto Zeeman longitudinale. Lampada a scarica senza elettrodi (EDL), misure di assorbanza a 213,6 nm con uno slit di 0,7 nm. Tubi di grafite pirolitica riscaldati trasversalmente con piattaforma integrata (THGA end-caps). Software WinLab 32.
- Ottimizzazione delle temperature per il processo di pirolisi e di atomizzazione
- Valutazione della linearità su due intervalli di concentrazione
- Studio dell'analita in matrici reali
- Valutazioni di eventuali interferenze (effetto matrice) con l'analisi dei campioni in fase acquosa.
- Preparazione del campione
- Trattamenti su campioni tal quali (sperimentazione dei modificanti di matrice a base di Lantanio e Nichel) e su campioni mineralizzati per analisi in fase acquosa (effetto matrice).
- > Ripetibilità e riproducibilità intermedia su campioni reali
- Accuratezza
- Mediante campioni RM da circuiti di correlazione
- Confronto del metodo di analisi con il metodo di riferimento ISO 10540-2:2003

Fase sperimentale del metodo

innovazione e ricerca


Programma di temperatura del fornetto di grafite per la fase organica


Step	Temperatura (°C)	Ramp time (sec)	Hold time (sec)	Flusso interno gas (ml/min)	Tipo di gas
1	200	10	25	250	Argon
2	450	40	35	250	Argon
3	1100	5	20	250	Argon
4	2500	0	5	0	Argon
5	2500	1	4	250	Argon

Programma di temperatura del fornetto di grafite per la fase acquosa

Step	Temperatura (°C)	Ramp time (sec)	Hold time (sec)	Flusso interno gas (ml/min)	Tipo di gas
1	110	1	20	250	Argon
2	130	5	30	250	Argon
3	1300	10	20	250	Argon
4	2500	0	3	0	Argon
5	2500	1	2	250	Argon

Variazione della risposta del Fosforo a diverse temperature di pirolisi (A) e di atomizzazione (B) su un campione di olio vegetale addizionato con 20 mg/kg di fosforo

Valutazione della sensibilità misurata dal valore della massa caratteristica per il Fosforo

Massa caratteristica: massa dell'analita in picogrammi necessaria per produrre un picco avente un'assorbanza di 0.0044 unità o un'area di 0.0044 Assorbanza x secondo.

Massa caratteristica

Fosforo in fase organica: 23000 pg/0.0044 A x s

Fosforo in fase acquosa: 13000 pg/0.0044 A x s (Rif. 12000)

Campo di misura e di linearità del metodo

innovazione e ricerca

Campo di misura (validità): intervallo dell'analita determinabile con precisione ed accuratezza. Il campo di misura è espresso nella stessa unità di misura dell'analita. Campo di applicazione compreso tra 0,6 - 60 mg/kg di fosforo nel campione.

Linearità

La linearità del metodo è stata valutata mediante l'analisi di soluzioni standard di fosforo preparate direttamente in olio bianco e diluendole con modificante di matrice in proporzione 1:1 (m/m).

- Sono stati valutati due intervalli di concentrazioni (10 40 mg/kg e 20 60 mg/kg)
- L'intervallo è stato ampliato fino a 100 mg/kg, ma con deviazioni dalla legge di Lambert-Beer
- I valori delle due rette di calibrazione (pendenze e intercette) erano molto simili con coefficiente di correlazione $r^2 > 99,0 \%$
- La linearità è mantenuta fino alla concentrazione di 60 mg/kg
- Intervallo di linearità finale compreso tra 10 60 mg/kg.
- Questo intervallo ci ha permesso l'analisi di campioni aventi differenti quantità di fosforo senza operare successive diluizioni.

Retta di calibrazione del Fosforo in soluzioni standard di olio

	Intervallo 10 – 40 mg/kg	Intervallo 20 – 60 mg/kg
Equazione retta	y = 0,00080 x + 0,00113	y = 0,00083 x + 0,00073
Valore r ²	0,993	0,998

Precisione del metodo

innovazione e ricerca

DEFINIZIONI

Precisione: grado di concordanza fra risultati di prova indipendenti ottenuti nelle condizioni stabilite.

Ripetibilità (r): massima differenza accettabile con un livello di fiducia del 95% tra due risultati di prova indipendenti ottenuti con lo stesso metodo, dallo stesso operatore, con la stessa apparecchiatura in condizioni operative costanti, su materiali identici e in intervalli di tempo brevi. - Condizioni di ripetibilità ristretta.

Precisione intermedia: massima differenza accettabile con un livello di fiducia del 95% tra due risultati di prova indipendenti ottenuti con lo stesso metodo, dallo stesso operatore, con la stessa apparecchiatura in condizioni operative costanti, su materiali identici e in intervalli di tempo lunghi.

Riproducibilità (R): massima differenza accettabile con un livello di fiducia del 95% tra due risultati di prova indipendenti ottenuti con lo stesso metodo, da operatori diversi, usando apparecchiature diverse, su materiali identici e in intervalli di tempo diversi.

PRECISIONE DEL METODO

La	precisione del metodo è stata determinata effettuando 8 analisi su un campione di olio vegetale addizionato a tre diverse
CO	ncentrazioni di fosforo, in condizioni di:
	ripetibilità ristretta
	precisione intermedia, analizzando lo stesso campione in giorni diversi.
	calcolo della ripetibilità e della precisione intermedia, attraverso analisi della varianza (ANOVA)
	calcolo dal coefficiente di variazione percentuale di riproducibilità CV % dall'equazione di Horwitz quindi dello scarto tipo
	di riproducibilità σ_{R} della riproducibilità R e della deviazione standard relativa di riproducibilità RSD _R %.
	Calcolo del valore di HORRAT (indicatore di accettabilità della precisione dell'analisi) dal rapporto tra la deviazione
	standard relativa percentuale sperimentale (RSD%) in condizioni di precisione intermedia e il valore di RSD% fornito
	dall'equazione di Horwitz.

Risultati di precisione del metodo

innovazione e ricerca

Risultati dello studio di precisione per l'analisi del fosforo

 S_r = Deviazione standard di ripetibilità; RSD_r% = deviazione standard relativa di ripetibilità; Ripetibilità = $2.8 \times S_r$; S_R = Deviazione standard di precisione intermedia; RSD_R% = deviazione standard relativa di precisione intermedia; Riproducibilità = $2.8 \times S_R$

Ripetibilità					
Concentrazione P (mg/kg)	28	47	62		
S _r (mg/kg)	1.0	1.2	1.1		
RSD _r (%)	3.6	2.7	1.8		
Ripetibilità (mg/kg)	2.8	3.5	3.1		
Precisione in	ntermedia				
Concentrazione di P (mg/kg)	19	39	57		
S _R (mg/kg)	0.7	2.7	2.8		
RSD _R (%)	3.9	6.9	5.0		
Riproducibilità (mg/kg)	2.0	7.5	7.9		
RSD calcolato dall'equazione di Horwitz (%)	10.3	9.2	8.7		
HORRAT	0.4	0.7	0.6		

LEGGE DI HORWITZ

$$CV\% = 2$$
 (1-0,5logC) Concentrazione come frazione di massa σ_R = $CV\% * C/100$

$$\sigma_R$$
= 0,02 * C ^{0,8495} Per concentrazioni tra 0,12 mg/kg e 138 mg/kg

$$\frac{1}{2} \sigma_{R} \le s_{r} \le \frac{2}{3} \sigma_{R}$$
 Requisito di validità

Riproducibilità R =
$$2.8 \times \sigma_R$$

VALORE DI HORRAT

- < 1 buona precisione analitica
- 1-1,5 risultati accettabili
- > 2 presenza di problemi analitici

Accuratezza del metodo

innovazione e ricerca

ACCURATEZZA: grado di accordo fra un risultato di prova e il valore di riferimento accettato. L'accuratezza si riferisce a una combinazione di giustezza e precisione e comprende una combinazione di errori casuali e di errore sistematico o scostamento.

L'accuratezza del metodo è stata determinata analizzando campioni di oli vegetali aventi una concentrazione di fosforo certificata.

- Difficoltà nel reperire un materiale di riferimento a concentrazione certificata di fosforo in olio
- Sono stati analizzati due campioni provenienti da un circuito di correlazione interlaboratorio organizzato dalla UNICHIM (Milano) nel 2010, in particolare olio motore.
- La concentrazione di fosforo in tali campioni derivava dal trattamento statistico dei risultati delle prove interlaboratorio.
- La concentrazione misurata è la media di 3 analisi ripetute sullo stesso campione.
- I risultati riportati mostrano come il metodo di analisi abbia una buona accuratezza, attestata dai valori di recupero % dei due campioni pari a 97 e 103%.

Risultati dello studio di accuratezza per l'analisi del fosforo

S = Deviazione standard di ripetibilità; RSD% = deviazione standard relativa

	Campione A	Campione B	
Concentrazione certificata	Valore Consensuale =	Valore Consensuale =	
(mg/kg)	752	794	
	Min = 710 Max = 810	Min = 710 Max = 950	
Concentrazione misurata	730	816	
(mg/kg)			
S (mg/kg)	31	15	
RSD %	4,3	1,8	
Recupero %	97.0	102.8	

Limite di rivelabilità e di quantificazione

innovazione e ricerca

La **IUPAC** (International Union of Pure and Applied Chemistry) definisce il limite di rivelabilità come la quantità di analita che produce un segnale uguale a tre volte la deviazione standard del fondo sB, considerando una distribuzione normale e un livello di confidenza del 99.87%.

LOD = 3 x s_B - una concentrazione di analita inferiore a questa non può essere rilevata

Se la sua concentrazione è compresa tra 3 x sB e 10 x sB è possibile solo una rivelazione qualitativa

 $LOQ = 10 \times s_B$ - una concentrazione superiore a questa può essere determinata quantitativamente

Il segnale del fondo viene misurato per una soluzione di bianco.

Limite di rilevabilità (LOD) e di quantificazione (LOQ)

Il limite di rilevabilità rappresenta il minimo segnale rilevabile con un errore accettabile, solitamente definito come il rapporto tra segnale e rumore uguale a 3. Il limite di quantificazione è definito come il rapporto tra segnale e rumore uguale a 10.

- Per il calcolo del LOD e LOQ è stato analizzato 8 volte un campione di olio bianco
- Si è poi calcolata la deviazione standard delle 8 prove
- I valori di LOD e LOQ sono stati calcolati come 3 volte e 10 volte la deviazione standard.

Limite di rilevabilità (LOD) e di quantificazione (LOQ) per l'analisi del Fosforo

	Nel campione diluito in modificante 1:1	Nel campione iniziale
LOD (mg/kg)	0.3	0.6
LOQ (mg/kg)	1.0	1.9

Confronto con il metodo di riferimento

innovazione e ricerca

Confronto del metodo di analisi con il metodo di riferimento ISO 10540-2:2003

Il metodo ISO 10540-2:2003 prevede l'analisi del fosforo negli oli e grassi vegetali ed animali mediante assorbimento atomico con fornetto di grafite. La metodica analitica prevede l'impiego di una soluzione di lantanio in cicloesano al 0.2% come modificante di matrice e riporta i dati di precisione, ottenuti dalle prove di analisi di due circuiti interlaboratorio organizzati nel 1989 e 1999. Inoltre riporta i limiti sul valore di ripetibilità e riproducibilità dell'analisi.

Il metodo proposto soddisfa tutti i requisiti riportati nel metodo ISO 10540-2:2003, sia in termini di intervallo di linearità, di precisione del metodo (espresso come ripetibilità e riproducibilità) e di limite di rilevabilità.

Risultati dello studio di comparazione dei metodi per l'analisi del fosforo

Ripetibilità = $2.8 \times S_r$; Riproducibilità = $2.8 \times S_R$; S_r = Deviazione standard di ripetibilità; S_R = deviazione standard di riproducibilità; LOD = limite di rilevabilità

	Metodo di riferimento ISO 10540-2:2003			Metodo proposto		
Intervallo di linearità (mg/kg)	≤ 40			≤ 60		
Valori di concentrazione (mg/kg)	28	47	62	28	47	62
Ripetibilità, r (mg/kg)	≤ 6.2	≤ 10.0	≤ 13.0	2.8	3.5	3.1
Valori di concentrazione (mg/kg)	19	39	57	19	39	57
Riproducibilità, R (mg/kg)	≤ 6.3	≤ 12.6	≤ 18.3	2.0	7.5	7.9
LOD (mg/kg)	1.0		0.6			

Analisi dell'effetto matrice sulla determinazione del fosforo

innovazione e ricerca

Analisi dell'effetto matrice sulla determinazione diretta del fosforo attraverso l'analisi del fosforo in fase acquosa

Comparazione dei metodi per l'analisi del fosforo in fase acquosa ed organica

	Caratteristiche del metodo di analisi del fosforo in <u>fase</u> acquosa			Caratteristiche del metodo di analisi del fosforo in <u>fase</u> organica			
Linearità	5 – 20 mg/L		20 - 60 mg/kg				
	y = 0.00	0641 x + 0.	00760	y = 0.00083 x + 0.00073			
r ²		0.991			0.998		
Massa caratteristica (pg/0.0044 A ×	130	00 (rif. 120	00)		23000		
s)							
LOD	_	g/L (17 mg/ campione)	kg sul		0.6 mg/kg		
LOQ	0.9 mg	g/L (57 mg/ campione)	kg sul	1.9 mg/kg			
Unità di misura	mg/L		mg/kg				
Valori di concentrazione	5	10	20	28	47	62	
Deviazione standard relativa di	3.1	3.2	2.4	3.6	2.7	1.8	
ripetibilità RSD, [%]							
Valori di concentrazione	5	10	20	19	39	57	
Deviazione standard relativa di riproducibilità RSD _R [%]	5.4	4.7	4.2	3.9	6.9	5.0	

Conclusioni

innovazione e ricerca •

Sviluppato e validato un metodo per l'analisi diretta del fosforo in oli e grassi di origine vegetale ed animale ad uso
alimentare ed industriale mediante assorbimento atomico con fornetto di grafite.
Tra i modificanti di matrice selezionati il nichel è risultato essere il più adatto fornendo una buona sensibilità analitica e
provocando la minore usura del tubo di grafite e uno scarso effetto memoria.
Il metodo di analisi è stato validato internamente e confrontato con la norma ISO 10540-2:2003, avente il medesimo
campo di applicazione e tecnica analitica, fornendo ottimi risultati.
Il metodo di analisi sviluppato prevede un ampio campo di applicazione includendo matrici molto diverse tra loro.
L'assenza di effetto matrice è stata verificata su tutte le tipologie di matrici, siano essi oli vegetali grezzi destinati alla
successiva raffinazione per renderli ad uso alimentare, oli vegetali per uso industriale e grassi animali, paragonando i
risultati con quelli ottenuti in fase acquosa.
Per tutti i campioni analizzati il metodo in fase organica si è dimostrato semplice, veloce e affidabile.

Secondo caso pratico – Determinazione di elementi negli oli

innovazione e ricerca

Determinazione diretta di alcuni metalli negli oli extra vergini di oliva mediante assorbimento atomico con fornetto di grafite (GF-AAS) D. Baglio, L. Folegatti - RISG VOL. XC Luglio/Settembre 2013

Obiettivi:

sviluppare e validare i metodi di analisi per la determinazione di 14 elementi metallici (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sn, Zn e V) negli oli extra vergini di oliva mediante diluizione del campione in un solvente organico (cicloesano) e introduzione diretta in uno spettrofotometro ad assorbimento atomico dotato di un fornetto di grafite. Disporre di metodi diretti (in fase organica), sensibili, affidabili, con intervalli di linearità tra 10 – 60 μg/kg e limiti di rilevabilità e quantificazione molto bassi necessari per soddisfare le esigenze del settore oleario.

Limiti massimi consentiti nei grassi e oli alimentari

- Regolamento CE 1881/2006 e successive modifiche tenore massimo per Pb di 0,10 mg/kg
- Il Consiglio Oleicolo Internazionale (COI) e il Codex
 Alimentarius come criterio di qualità per gli oli vergini di oliva ha posto un contenuto massimo per il:

Fe di 3,0 mg/kg Cu di 0,1 mg/kg Pb di 0,1 mg/kg As di 0,1 mg/kg

Metodi di riferimento ISO in grassi e oli vegetali ed animali

- ISO 8294:1994 (revised 2017)- Determination of copper, iron and nickel contents — Graphite furnace atomic absorption method
- ISO 12193:2004 (revised 2018)- Determination of lead by direct graphite furnace atomic absorption spectroscopy
- UNI EN 15763:2010 Determinazione di arsenico, cadmio, mercurio e piombo nei prodotti alimentari per mezzo di spettrometria di massa con plasma accoppiato induttivamente (ICP-MS) dopo digestione sotto pressione
- UNI EN 14083:2003 Determinazione di piombo, cadmio, cromo e molibdeno mediante spettrometria ad assorbimento atomico con forno di grafite dopo digestione sotto pressione

Terzo caso pratico – Determinazione di amminoacidi liberi

innovazione e ricerca

DETERMINAZIONE DEL CONTENUTO DI TREONINA, GLICINA E TRIPTOFANO LIBERI NEI PRODOTTI FERTILIZZANTI LIQUIDI

Linee guida Unichim per la realizzazione di metodi di prova predisposte dalla Commissione «Prodotti fertilizzanti»

Sviluppo e validazione di metodi specifici per l'immissione sul mercato di nuovi prodotti

Terzo caso pratico – Determinazione di amminoacidi liberi

innovazione e ricerca

Traccia per la redazione del metodo di prova secondo linee guida Unichim

- Avvertenza
- Introduzione
- ♣ Scopo e campo di applicazione
 - Riferimenti normativi
 - 🖶 Termini e definizioni
 - Principio del metodo
 - Reagenti e materiali
 - Apparecchiature
 - Campionamento
- Procedimento (preparazione del campione, procedimento, taratura del sistema di misura, condizioni strumentali)
 - Calcolo ed espressione dei risultati
 - Precisione (ripetibilità stretta, ripetibilità intermedia, riproducibilità)
 - Giustezza (Recupero)
 - ♣ Limiti di rivelabilità e di quantificazione

Terzo caso pratico – Determinazione di amminoacidi liberi

innovazione e ricerca

Offerta per la redazione del metodo di prova secondo linee guida Unichim

ANALISI	METODO	PREZZO
Determinazione degli amminoacidi	(metodo per cromatografia a	
Glicina e Treonina	scambio ionico – sistema litio)	
Determinazione dell'amminoacido	(metodo per cromatografia a	
Triptofano	scambio ionico – sistema litio)	

L'offerta include:

- linearità del metodo
- la determinazione della ripetibilità stretta per un livello di concentrazione effettuando 10 prove indipendenti per il Triptofano, Glicina e Treonina;
- il controllo del recupero previa fornitura dell'idrolizzato proteico con relativa scheda di purezza del prodotto ;
- i limiti di rivelabilità;
- la stesura del metodo

Terzo caso pratico - Campo di applicazione del metodo

innovazione e ricerca

INTRODUZIONE

Il metodo di prova ha lo scopo di determinare il contenuto di alcuni amminoacidi (in particolare di treonina, glicina e triptofano) aggiunti in forma libera ad un prodotto fertilizzante liquido

OGGETTO

Il metodo di prova descrive la determinazione del contenuto di treonina, glicina e triptofano liberi nei prodotti fertilizzanti in forma liquida con l'utilizzo di un analizzatore di amminoacidi.

CAMPO DI APPLICAZIONE

Il metodo è applicabile ai seguenti amminoacidi: treonina, glicina e triptofano presenti nel campione in forma libera. Il metodo non permette la determinazione degli amminoacidi legati a peptidi, non distingue gli amminoacidi dai loro sali e non può distingue la forma D degli amminoacidi dalla forma L.

La matrice è costituita da un fertilizzante composto da un idrolizzato fluido a base di epitelio animale e alghe brune. Le concentrazioni attese sono rispettivamente di circa:

- Treonina + Glicina ~ 1.5%
- Triptofano ~ 0.5%

Il rapporto:

 $\frac{Glicina + Treonina}{Triptofano} \ deve \ essere \ compreso \ tra \ 2.8 - 3.2$

RIFERIMENTI NORMATIVI

REGOLAMENTO (CE) N. 152/2009 della Commissione del 27 gennaio 2009 che fissa i metodi di

campionamento e d'analisi per i controlli ufficiali degli alimenti per gli animali, Gazzetta ufficiale

dell'Unione europea L 54 del 26.2.2009, pag. 1.

UNI ISO 5725-1:2004 - Accuratezza (esattezza e precisione) dei risultati e dei metodi di misurazione - Parte 1: Principi generali e definizioni.

UNI ISO 5725-2:2004 – Parte 2: Metodo base per determinare la ripetibilità e la riproducibilità di un metodo di misurazione normalizzato.

UNI ISO 5725-4:2004 - Parte 4: Metodi di base per determinare l'esattezza di un metodo di misurazione normalizzato.

UNI ISO 11843-1:2009 - Capacità di rivelazione - Parte 1: Termini e definizioni.

UNI ISO 11843-2:2009 - Capacità di rivelazione - Parte 2: Metodologia nel caso di taratura lineare.

Terzo caso pratico - Fase sperimentale

innovazione e ricerca

PRINCIPIO

Gli amminoacidi liberi sono estratti dal campione di fertilizzante con acido cloridrico diluito. Le macromolecole azotate coestratte vengono fatte precipitare con acido solfosalicilico e vengono rimosse per filtrazione. La soluzione filtrata contenente gli amminoacidi liberi viene opportunamente diluita e gli amminoacidi sono separati per cromatografia a scambio ionico e determinati per reazione post-colonna con ninidrina e rivelazione fotometrica a 570 nm.

PROCEDIMENTO

- Preparazione del campione
- **Determinazione:** pesare quantità appropriata aggiungere miscela di estrazione (HCl 0,1 N), agitare per 1 h, aggiungere acido solfosalicilico, portare a volume con tampone litio citrato 0.2 N a pH 2.20, filtrare e iniettare nel cromatografo ionico.
- Taratura del sistema di misura
 - Preparazione delle 5 soluzioni standard di calibrazione: concentrazioni comprese tra 5 e 30 μ g/ml per la treonina, 3 e 18 μ g/ml per la glicina, 6 e 55 μ g/ml per il triptofano e 22,40 μ g/ml per la norleucina, utilizzata come standard interno.
- Separazione degli amminoacidi liberi: il confronto dei diversi tempi di ritenzione con quelli di una soluzione di amminoacidi standard consente di individuare i singoli amminoacidi presenti nel campione.
- **Espressione dei risultati:** a partire dai valori di area ottenuti per ogni singolo amminoacido per le cinque soluzioni standard si costruiscono le rette di taratura applicando il metodo dello standard interno.
 - Per interpolazione lineare sulle rispettive rette di taratura si derivano le concentrazioni dei singoli amminoacidi presenti nel campione. Il risultato viene poi riportato alla quantità iniziale di campione, considerando i volumi prelevati.

Il risultato viene espresso in g di amminoacido per 100 g di campione, con tre cifre decimali.

Terzo caso pratico - Ripetibilità

innovazione e ricerca

Ripetibilità stretta

Il calcolo della ripetibilità stretta è stato eseguito analizzando 10 diverse aliquote dello stesso campione di prova (un solo livello di concentrazione), con lo stesso operatore, con le stesse apparecchiature e in tempi stretti. E' stata verificata la distribuzione normale dei dati mediante il test Shapiro-Wilks 5% e la presenza di dati anomali con il test Huber 5%.

Parametro	Treonina	Glicina	Triptofano
Concentrazione media, (g/100g)	0.778	0.780	0.502
Scarto tipo di ripetibilità (s _r), (g/100g)	0.008	0.011	0.010
Ripetibilità r, (g/100g)	0.025	0.037	0.031
Coefficiente di variazione (CV _r %)	1.01	1.47	1.91

Terzo caso pratico - Recupero

innovazione e ricerca

RECUPERO

Il calcolo del recupero è stato effettuato aggiungendo quantità note dei singoli amminoacidi al formulato base di fertilizzante liquido.

L'analisi è stata eseguita in triplicato.

Parametro	Treonina	Glicina	Triptofano
Concentrazione media, (g/100g)	0.800	0.851	0.555
Recupero (%)	101.0	101.2	98.4
Deviazione standard del recupero (%)	1.0	1.5	1.9

Terzo caso pratico - Limiti di rivelabilità e quantificazione

innovazione e ricerca

LIMITE DI RILEVABILITA' (LOD) è la più bassa concentrazione dell'analita che può essere rilevata, ma non necessariamente determinata quantitativamente, nelle condizioni sperimentali del metodo. LIMITE DI QUANTIFICAZIONE (LOQ) è la più bassa concentrazione analitica che può essere determinata quantitativamente con accettabile precisione ed esattezza nelle condizioni sperimentali del metodo

Il calcolo del limite di rilevabilità e del limite di quantificazione è stato effettuato applicando le formule contenute nella norma ISO 11843-2

Parametro	Treonina	Glicina	Triptofano
Limite di rilevabilità (g/100g)	0.013	0.005	0.018
Limite di quantificazione (g/100g)	0.028	0.010	0.047

innovazione e ricerca

GRAZIE PER L'ATTENZIONE

Liliana Folegatti

Email: liliana.folegatti@mi.camcom.it

\(+39 02 70649780